Scaling Introductory Programming Courses: Harnessing Both the Human and the Humane

Mehran Sahami
Computer Science Department
Stanford University
Outline

• The power of humans
 – CS198 section leading program at Stanford

• Scaling
 – Code in Place: scaling section leaders world-wide

• Adding the Humane
 – Embedding EthiCS
CS198 Section Leading Program

- Section Leaders are undergraduate TAs for CS1 and 2 (named CS106A and CS106B, respectively) at Stanford

- Competitive application process
 - 15-30% acceptance rate
 - Enroll in quarter-long workshop on teaching, grading, etc.

- Responsibilities
 - Teach weekly 50-minute section
 - Grade assignments/exams and hold interactive grading
 - Hold “helper hours” in campus computer cluster
 - Weekly staff meetings
 - Total commitment: ~15 hours/week

- Great experience for both students and section leaders
 Student rave about section leaders in evaluations, emails, etc.
Principles Underlying Access to CS

• Open access to CS courses and major
• No enrollment limits on introductory classes
• Introductory classes are meant to be a “funnel” not a “filter”
 – Aim to making computing a welcoming option to all students
 – Don’t discriminate between CS/non-CS students
• We don’t create barriers (e.g., minimum GPA) for students to declare CS as a major
 – No limit on the number of CS majors
 – Such barriers disproportionately impact women and underrepresented minorities (alas, another talk, another day)
 – (Generally) uncapped enrollments in later CS courses
Today's first guiding question:

How can we scale access to human centric computer science education, for community service?
Code in Place

Online Section Leading for Scalable Human-Centric Learning

Chris Piech Ali Malik Kylie Jue Mehran Sahami

And many more!
Code in Place:

908 section leaders teach
10,428 students
1/2 of CS106A
As Community Service
def become_section_instructor():
 • Lead groups of up to 15 students in weekly problem-solving sessions
 • Gain communication and leadership experience
 • Deeply solidify your understanding of CS and Python fundamentals
 • Join a network of world-class computer science educators from Stanford, the tech industry, the teaching community, and more
 • Help give back to the community during these unprecedented times

def become_student():
 • Learn about program design, decomposition, encapsulation, abstraction, and testing
 • Practice good programming style
 • Gain experience with the Python programming language
Gather around and let me tell you a story
China Reports First Death From New Virus

The coronavirus, which surfaced in the city of Wuhan, has put the region on alert, but there is no evidence among humans.

W.H.O. Declares Global Emergency as Wuhan Coronavirus Spreads

The announcement came as nearly 10,000 cases have been reported worldwide.
Many Counties in California: Shelter in Place!

What can we do to help? Code in Place!
Our teaching community responded to the call in huge numbers. Over 100 volunteers (alum and current) to help build.
The New York Times

The Year of the MOOC

By LAURA PAPPANO NOV. 2, 2012
Why wouldn't everyone want to learn from the world experts?
Why wouldn't everyone want to learn from the world experts?

Human touch?

Feedback on work?
How do we scale human-centered education?
The magnitude of people who want to teach is roughly proportional to the magnitude of people who want to learn.

Teaching is learning

Teaching is joyful

The education community has barely scratched the surface of the potential in this claim.
Who are these people?
Section Leaders

including Christelle Scharff!
Section Leaders

Strong grasp of course material

Often a **first-time** teacher

Teachers from **wider backgrounds** (industry, geography etc)

Can be **anyone**! Past students, industry professionals, etc.
The many benefits of section leaders
Benefits of section leaders

For the student

Section leaders can be closer in lived experience to students. Can **speak their language** and make believable role models.

Course is robust. Army of section leaders are bought into making it a success.

Students have high **social encouragement** to complete.

Chance to include teachers from **wider backgrounds** (industry, geography etc)
Benefits of section leaders

For the section leader

- **Section leaders get** education about teaching (communication + technical)
- Develop deeper understanding of concepts
- Potential for networking and job opportunities
- Teaching is an intermediate job while learning. Gives students purpose.
- Strong sense of responsibility
Code in Place SLs
Section leaders are trained in cohorts of 20

Students meet once a week in groups of 10

Led by a volunteer “Section Leader”

Led by a “Teaching Leader”

Key to scaling human teaching

Idea: Hierarchical scale of human teaching
→ **Training**
 Attend 2.5 hours of live teacher training and complete the corresponding readings/videos.

→ **Teaching**
 1.5 hrs/week for 5 weeks (starting the week of April 13th):
1000+ volunteer section leader applied in 7 days...
How did they apply?

- Python debugging advice
- Record a 5-minute teaching demo
Why did they volunteer?

<table>
<thead>
<tr>
<th>Reason for wanting to volunteer Section Lead</th>
<th>Percent of applicants</th>
</tr>
</thead>
<tbody>
<tr>
<td>Give back through community service</td>
<td>86%</td>
</tr>
<tr>
<td>Improve my own teaching ability</td>
<td>72%</td>
</tr>
<tr>
<td>Be part of an experiment in online education</td>
<td>66%</td>
</tr>
<tr>
<td>I just love teaching programming</td>
<td>66%</td>
</tr>
<tr>
<td>Be part of a community of section leaders</td>
<td>57%</td>
</tr>
</tbody>
</table>
Who were they?

And so much more...
How do we **train** section leaders from such a **wide range of experiences**?
Modeling training after the section experience

- Small groups that enable active learning and discussion-based activities
Modeling training after the section experience

- Small groups that enable active learning and discussion-based activities
- Consistent “teaching leader” as a touchpoint for community and near-peer mentorship
Modeling training after the section experience

- Small groups that enable active learning and discussion-based activities
- Consistent “teaching leader” as a touchpoint for community and near-peer mentorship
- Curriculum designed for a diverse group of new and experienced teachers
Training Sessions

<table>
<thead>
<tr>
<th>Event</th>
<th>Duration</th>
<th>Details</th>
</tr>
</thead>
<tbody>
<tr>
<td>Welcome to Code in Place!</td>
<td>30 min</td>
<td>Before Code in Place starts with course instructors</td>
</tr>
<tr>
<td>Preparing for your first section</td>
<td>1 hour</td>
<td>Before their first section with their “teaching leader”</td>
</tr>
<tr>
<td>Leading a section for everyone</td>
<td>1 hour</td>
<td>After their first section with their “teaching leader”</td>
</tr>
<tr>
<td>Section Leader Learning Week</td>
<td>N/A</td>
<td>Optional workshops taught by staff and fellow section leaders</td>
</tr>
<tr>
<td>Training Sessions</td>
<td>Duration</td>
<td>Details</td>
</tr>
<tr>
<td>---</td>
<td>----------</td>
<td>--</td>
</tr>
<tr>
<td>Welcome to Code in Place!</td>
<td>30 min</td>
<td>Before Code in Place starts with course instructors</td>
</tr>
<tr>
<td>Preparing for your first section</td>
<td>1 hour</td>
<td>Before their first section with their “teaching leader”</td>
</tr>
<tr>
<td>Leading a section for everyone</td>
<td>1 hour</td>
<td>After their first section with their “teaching leader”</td>
</tr>
<tr>
<td>Section Leader Learning Week</td>
<td>N/A</td>
<td>Optional workshops taught by staff and fellow section leaders</td>
</tr>
</tbody>
</table>
Leading a section for everyone

Reflect on their own learning → Reflect on their teaching → Consider student hypotheticals

Toolbox for Outstanding Section Leaders
Learning programming with effective instruction for ALL

- At Code in Place, we believe teaching is about supporting student learning.

- Learning to program is not easy – students are learning a completely new way of thinking, and we are there to support them in the process!

- Remember that once upon a time you were also a novice. Recall the beginning of your programming journey. Share with students concepts that you struggled with and early misconceptions you had. Learning is not a bug-free endeavor!

1) Pro tips for great teaching

Group management:
- Ensure all students have a chance to have their voice heard (they contribute and interact with the group), respecting their preferred mode of participation. For some students, this might be verbal, for others written (using the chat), and others might...
Hello and welcome Chris Piech,

The time of COVID-19 has been difficult for many people around the world, in many different ways. As an act of community service, a group of computer science instructors is coming together to offer our teaching services free of charge for people who want to learn introductory coding. About the course.

To apply, please finish the tasks below by April 8th. We will review all completed applications by April 10th.

For beginners: We don’t expect you to have any coding knowledge before taking this course! We expect the exercises to be a little tricky - but you can do it - check out the FAQs if you get stuck!

Not enrolled yet: We want to offer this experience to everyone, but our number of spaces may be limited by how many high-quality volunteer teachers we get. We will review every single application that was completed by April 8th, 2020.

1. Tell us about yourself
 - Fill out this form

2. Learn Karel basics
 - Read chapters 1 through 5

3. Do a few exercises:
 A. Warmup
 B. Shelter-in-Place
 C. Piles

Just for fun! If you want more Karel:
Bonus: Frame Karel

Why are you taking the class? Demographics? Experience? Time commitment? Background statement. Honor code!

We log every keystroke and look at completion time.

50K started
20K completed
10K admitted
40% of students had a job or living situation change because of COVID-19
Student Experience

- Recorded videos
- Live sections once a week
- Discussion forum
- Course Website
- IDE for Coding
Course Structure and Content

Structure
- Half of Stanford's CS106A (CS1)
- Karel the Robot (1 week)
- Python (4 weeks)
- 3 hours of lecture content and 1 hour section each week

<table>
<thead>
<tr>
<th>Wk</th>
<th>Monday</th>
<th>Wednesday</th>
<th>Section</th>
<th>Friday</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>APR 13TH</td>
<td>APR 15TH</td>
<td>APR 15TH, 7PM</td>
<td>APR 17TH</td>
</tr>
<tr>
<td>2</td>
<td>APR 20TH</td>
<td>APR 22ND</td>
<td>APR 22ND, 7PM</td>
<td>APR 24TH</td>
</tr>
<tr>
<td>3</td>
<td>APR 27TH</td>
<td>APR 29TH</td>
<td>APR 29TH, 7PM</td>
<td>MAY 1ST</td>
</tr>
<tr>
<td>4</td>
<td>MAY 4TH</td>
<td>MAY 6TH</td>
<td>MAY 6TH, 7PM Assn 10 Graphics</td>
<td>MAY 8TH</td>
</tr>
<tr>
<td>5</td>
<td>MAY 11TH</td>
<td>MAY 13TH</td>
<td>MAY 13TH, 7PM Data Section</td>
<td>MAY 18TH</td>
</tr>
<tr>
<td>6</td>
<td>MAY 18TH</td>
<td>MAY 20TH</td>
<td>NO SECTION</td>
<td>MAY 22ND</td>
</tr>
<tr>
<td></td>
<td>Final Project</td>
<td>Final Project</td>
<td></td>
<td>Final Project</td>
</tr>
</tbody>
</table>

Topics
- Control flow
- Variables/expressions
- Functions and parameters
- Images and graphics
- Strings
- Lists
- Dictionaries
Outcomes
99.7% of section leaders completed class
 - Largest number of section leaders in any class that we are aware of

56% of students completed class
 - Submitted all programming assignments
 - Significantly higher than traditional MOOC completion rate (~5%)

Sincere community of students
 - Positive, uplifting discussion comments
 - Student made cookies with class designs
 - "One of the best experiences of my life."
 - "This course saved my life... You were my only lifeline. I really cannot thank you enough!"
Section Leaders and Students Loved It

* Surveyed a random sample of students and section leaders who *started* the course

<table>
<thead>
<tr>
<th>Group</th>
<th>Net Promoter (raw)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Students</td>
<td>+90.3 (9.7)</td>
</tr>
<tr>
<td>Section Leaders (SL)</td>
<td>+70.1 (9.2)</td>
</tr>
<tr>
<td>SL: First Timer</td>
<td>+76.3 (9.4)</td>
</tr>
<tr>
<td>SL: in University</td>
<td>+75.4 (9.5)</td>
</tr>
</tbody>
</table>
Students wanted a T-shirt to remember the class
 • Students created designs. Voted on a winner.
 • We turned it into a fundraiser. Raised $15,000 for charity voted on by students.
 • Many students bought t-shirts for other students in class who could not afford them.

6 students reported getting full time coding jobs after the class

1 new CS teacher
Takeaways
Unique to Spring 2020?

Perhaps. But we think the answer may be no.

Actually Spring 2020 was a hard time:

17% of students had a change in employment
16% of students reported a change in living situation
The scaled-section-leader idea worked in an online class.

It is a time for community service education projects.

Sense of responsibility drives completion.

Especially great for getting folks their first teaching experience.
Can we do it again?
Code in Place 2.0 in Spring 2021?

- **Fall 2020**: Recruit students and SLs (3 weeks)
- **Winter 2021**: Run Code in Place 2.0 (6 weeks)
- **Spring 2021**: Code in Place 2.0
- **Summer 2021**: Second half?

Dates
- First day of CIP: April 19th
- Last day of CIP: May 28th
What is the most important thing to recreate?
Today's second guiding question:

How can we get CS students to better appreciate the social consequences of their work?
Embedded EthiCS

Kathleen Creel Rob Reich Mehran Sahami

And many more!
The Problem

- Teaching ethics is often not seen as a core part of a CS education
- CS faculty don't necessarily feel prepared to teach ethics
- Philosophy department courses in ethics are not specific to computing
- Even when tech ethics is taught, it is often relegated to a separate course
 - Not integrated into other coursework
 - Can't assume a particular background (e.g., machine learning)
 - Context may not be clear
 - Ethical implications are not taught adjacent to technology
- Creates a pattern that ethical evaluations only take place after technology is built
The Opportunity

• Teaching ethics *within* existing computer science classes
• Bring in external expertise to develop ethics modules
 – Leverage expertise from philosophy
• Topics in ethics should be revisited in *multiple* courses
 – Can be integrated into other coursework
 • Allows for assuming specific background
 – Context becomes immediately clear
 • Ethical implications are taught alongside technology
• Creates a pattern that ethical evaluations should be on-going *while* technology is built
The Approach

- **Embedded EthiCS**
 - Stanford part of a wider consortium of universities, including Harvard, MIT, and Univ. of Toronto
- **Hire post-docs with background in ethics and some understanding of technology**
- **Pair post-docs with grad students in CS**
- **Develop modules to be taught in existing classes**
 - Faculty instructor for course works with team to determine material and fit
 - Post-doc gives (at least) one lecture
 - Also multiple mini-lectures
 - (At least) one assignment leverages material from that lecture
 - Can also add mini-assignments throughout
- **Module designed so that faculty instructor can teach it again in the future**
The Specifics in CS1

- Katie Creel is Embedded EthiCS Fellow working with us
 - PhD in History and Philosophy of Science
 - BA in CS and in Philosophy
- In first term, paired with Nick Bowman (MS student in CS)
- Module in CS1 course on gender bias in text data
 - Assignment for student was to read a file with course evaluations
 - Evaluations include text comment, gender of instructor, and rating
 - Students build program to plot ratings by gender for terms in text
 - CS1 topics: file reading, string processing, data structures (lists and dictionaries), simple graphics
 - Ethical issues: understanding gender bias in online data
 - Also have some mini-assignments to compute some basic statistics from the data to show gender bias in different ways
The Plan This Year

• Plan to add Embedded EthiCS modules in 5 course this year:
 – Programming Methodology (CS106A – CS1 course in Python)
 – Programming Abstractions (CS106B – CS2 course in C++)
 – Computer Organization and Systems (CS107 – CS3 course)
 – Introduction to Probability for Computer Scientists (CS109)
 – Design and Analysis of Algorithms (CS161)
 – Design for Behavior Change (CS247B – upper division HCI course)

Required core courses for all CS undergrads
The Bigger Picture

• Planning Embedded EthiCS modules in 5-6 additional courses next year

• Additionally, have full courses on tech ethics:
 – CS181: "Computers, Ethics, and Public Policy"
 – CS182: "Ethics, Public Policy, and Technological Change"
 – All students required to take on "Technology in Society" courses
 • Either CS181 and CS182 would satisfy that requirement
Thank you for your attention

Q&A and Discussion